

Deutsches Biomasseforschungszentrum DBFZ gemeinnützige GmbH

Development of an affordable and fuel-flexible biomass burner for clean cooking in Togo: Analysis of environmental and climate impacts

Özge Mutlu¹, Dennis Krüger¹, Jérémie Kokou Fontodji²

Background

If wood and charcoal are substituted with palm kernel shells using Apeli stove and the amount of saved wood would be piled up in a football field assuming that 500 kg of wood can be stored in 1 m³ space, the height of the wood pile would be:

Assuming 1 tree can absorb 21 kg of CO_2 per year \rightarrow the amount of saved CO_2 in case of using Apeli stove (5 % scenario), would be equal to the amount of absorbed CO_2 by the number of trees given below:

Lack of access to clean cooking

600,000 younger than 5 years old lose their lives annually due to indoor air pollution related diseases³

16 million ha

Togo

forest area is exploited as fuel source every year⁴

Problem & Solution

est rian forest	 Herbaceous savanna Steppe Agriculture Irrigated agriculture

Fig 1: Change of forest areas in Togo⁶

substituting wood

Key Messages

Fig. 2: Apeli stove developed by DBFZ

Results of emission measurement based on ISO 19867-1 will be published soon.

Local biomass residues **Charcoal stove** Charcoal

How much wood and CO₂ emissions can be saved if baseline scenario is replaced with policy scenario?

¹ Deutsches Biomasseforschungszentrum, Thermochemical Conversion Department, Leipzig, Germany ² Laboratoire de Recherche Forestière, Faculté des Sciences, Université de Lomé, Lomé, Togo

More information on LabTogo project can be found here: https://www.dbfz.de/en/projects/labtogo

References

¹https://www.iea.org/reports/sdg7-data-and-projections ²https://www.who.int/data/gho/data/themes/air-pollution/household-air-pollution ³https://www.unicef.org/reports/clean-air-children ⁴https://doi.org/10.1016/j.rser.2016.11.175 ⁵https://cleancooking.org/reports-and-tools/air-pollution-factsheet/ ⁶https://eros.usgs.gov/westafrica/land-cover/land-use-land-cover-and-trends-togo

DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH Torgauer Straße 116 | 04347 Leipzig | www.dbfz.de Contact: Dr. Özge Mutlu oezge.mutlu@dbfz.de | Phone: +49 (0)341 2434-544

EUBCE 2022 | 30th European Biomass Conference and Exhibition I Online & Marseille, 9-12 May 2022